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A
1.0 INTRODUCTION G
2
o ‘ at

At the present time there still exists an element of uncertainty KBS
regarding the definition of an effective radius, which can be used to separate EEEE
the nonlinear near-field regime adjacent to an explosion from the linear far- ;;i:
field seismic regime. Using data sets from the COWBOY experiments and the L
SALMON test Trulio (1978, 1981) studied the decay of peak particle velocity as E'?3
a function of scaled distance in dome salt. He observed that decay rates are :l:i
significantly faster than can be explained assuming perfectly elastic behav- :if;
jor, and concluded that material behavior was not perfectly elastic, and prob- s
ably nonlinear, even at strains as low as those encountered at the most dis- R
tant instruments. Larson (1982) examined near-field particle motions in Ej?i
pressed salt in the laboratory using small-scale chemical explosions. He ;25;
demonstrated near-linear superposition of wave forms even at strains in excess L)
of 1074, Yet, the Q values calculated by Larson (12.5 near 10~3 strain and AT
24,9 near 6 1074 strain) depended on amplitude, indicating nonlinear Eﬁi
behavior, Furthermore, these values are low compared with those measured by iﬁ*
Tittmann (1983a) using the same material except at much lower amplitudes. The 2?3,
work of Tittmann (19832, 1983b) demonstrates that nonlinear effects, as re- NI
flected in an amplitude-dependent Q, can persist to very low levels of strain, ;;;’
even below 1076 in some cases. More recently, Minster (1982) and Minster and f{;:
Day (1984) re-examined the COWBOY data and concluded that the observed decay Y-
rates can only be explained using an amplitude dependent Q. However, Burdick A
et al (1984a) have argued that it is possible to model a seismic source func- ;?:i
tion for the Amchitka tests assuming linear behavior in the near field just iﬂiﬁ
outside the spail zone (approx. 700-1200 m/ktl/3). Furthermore, Burdick et a} C;“f
(1984b) argued that the same model can be used to predict the first vertical e
pulse arrival and rise times even within the spall zone. They used the con- §E$
cept of a compressional elastic radius, which may in fact be considerably less :If“
than a tensional elastic radius, which must extend at least as far as the -ﬂ?ﬁ
outer limits of the spall zone. ™ )
1 S

C6209A/md O

n
. L PaTe

.y L ot e et ARt ata e e ey L h e e e s e e e e - . P, -
TP AR P PO AT R T S R P R Ry S R S S e S i T WL L LR S ¢



‘l‘ Rockwell International

Science Center

% SC5361.6SAR

In this report we present the results of a recent study of the
response of Westerly granite to sinusoidal loading., The amplitude of tran-
sition from linearity to nonlinearity can be defined, and results are compared

to previous studies.

2,0 EXPERIMENTAL STUDIES

The techniques used to obtain the data presented in this report are
the same as those described in an earlier report (Tittmann, 1983a). Briefly,
a cylindrical specimen of Westerly granite, 13 cm in length and 0.71 cm in
radius, was clamped into an apparatus which enabled it to be vibrated in both
flexural and torsional modes. In this particular study the resonant frequency
was between 500 and 550 Hz for all measurements. The Q of the bar could be
calculated from the ratio of the resonant frequency to the bandwidth of the
resonance curve. The voltage of the electromagnetic transducer, used to drive
the resonance, could be adjusted so as to vary the amplitude of vibration
(vibration amplitudes for torsional and flexural vibrations are defined in
Fig. 1). Thus, attenuation (0'1) and RMS driving voltage can be measured as a
function of vibration amplitude in the sample. Provided that the sample
behaves linearly, the attenuation should be independent of vibration amp-
litude, and the RMS driving voltage should be proportional to vibration amp-
litude (c.f. Tittmann, 1983a). Measurements were made in both wet and dry
Westerly granite at effective pressures from O to 34 MPa.

The results of this study are shown in Figs. 2-21. The results are
qualitatively consistent with the results of previous studies (Tittmann,
1983a) in that linear behavior is observed at all Tow amplitudes, with a
transition for nonlinear behavior at high strain. The transition amplitude is
near 10'6 in all cases, including both torsion and flexure, increasing very
slightly with increasing effective pressure.
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Fig. 1 Definition of strain amplitude in fluxure and torsion.
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Fig. 2 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in dry Westerly granite at 0 MPa effective pressure.
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Fig. 3 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in dry Westerly granite at 1.7 MPa effective pressure.
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Fig. 4 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in dry Westerly granite at 3.4 MPa effective pressure.
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Fig. 7 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in dry Westerly granite at 0 MPa effective pressure.
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Fig. 8 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in dry Westerly granite at 1.7 MPa effective pressure.
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Fig. 9 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in dry Westerly granite at 3.4 MPa effective pressure.

Fig. 10 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in dry Westerly granite at 6.8 MPa effective pressure.
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Fig. 11 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in dry Westerly granite at 34 MPa effective pressure.
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Fig. 12 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in wet Westerly granite at 0 MPa effective pressure,
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Fig. 13 Attenuation and log RMS driving transducer voltage plotted

as a function of strain amplitude for torsional vibrations =
in wet Westerly granite at 1.7 MPa effective pressure. Dy
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Fig. 14 Attenuation and log RMS driving transducer voltage plotted

as a function of strain amplitude for torsional vibrations R
in wet Westerly granite at 3.4 MPa effective pressure. »
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Fig. 15 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in wet Westerly granite at 6.8 MPa effective pressure.
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Fig. 16 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for torsional vibrations
in wet Westerly granite at 34 MPa effective pressure.
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Fig. 17 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in wet Westerly granite at 0 MPa effective pressure.

Fig. 18 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in wet Westerly granite at 1,7 MPa effective pressure.
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Fig. 21 Attenuation and log RMS driving transducer voltage plotted
as a function of strain amplitude for flexural vibrations
in wet Westerly granite at 34 MPa effective pressure.

3.0 DISCUSSION

In this phase of the study, as in those presented earlier, the test
specimen was subjected to a long train of sinusoidal vibrations. For flexural
vibrations the test material spent half of its cycle primarily in tension and
half of its cycle primarily in compression. Therefore, using this type of mea-
suring technique with harmonic vibrations it is not possible to establish
whether the nonlinearity observed in the flexural mode data is due to re-
laxation in compression, relaxation in tension, or both. Recognizing the fact
that rocks are significantly stronger in compression than in tension it is
reasonable to expect that the nonlinearity is primarily a tensional phenome-
non, but this remains to be established experimentally. More data on the con-
stitutive properties of rocks at modest amplitudes (10'4 to 10'6) are re-
quired. An ideal study would include measurements in both uniaxial compres-
sion and uniaxial tension. Other issues regarding the applicability of the
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resonating bar technique for simulating non-linear pulse loading are discussed
in the previous report (Tittman, 1983b), and will not be repeated here.

It is quite reasonable to assume that the amplitude of transition
from linear to nonlinear behavior detected with the resonating bar apparatus
represent a lower limit on the corresponding transition amplitude for a
seismic pulse propagating in the near-field of an explosion. The accumulated
damage caused by subjecting the specimen to repeated cycles of high amplitude
vibration (Tittmann, 1983b) would have the effect of making the transition
amplitude appear relatively low in laboratory experiments compared with the
field. Furthermore, the material near the explosion is subjected to lower
levels of tensional stress than compressional stress, and tensional non-
linearity may occur at lower stress levels than compressional nonlinearity.

Measurements of the constitutive properties of materials in both
tension and compression are critical and will be included in future studies.

4.0 SUMMARY AND C

14

/ Nonlinear effectsihévé»been obséfved in a cylindrical test specimen
of Westerly granite which was subjected to both flexural and torsional modes
of resonant vibration. Nonlinear effects in shear are observed when the
shearing strain exceeds approximately 10'6, increasing slightly with
increasing effective pressure. Nonlinear effects in flexure are also observed
when the extension/compression strain exceeds,}O's,,a1so increasing very
slightly with increasing effective pressure. Thése transition amplitudes
probably represent a lower limit on the amplitude of transition from linear to

nonlinear behavior for the primary elastic pulse propagating in the near-field

ONCLUSTONS

of an explosion. Using these measurements it is not possible to determine
whether the nonlinear effects observed in flexure are primarily an extensional
or compressional feature. This is a critical issue and in future studies we
will attempt to examine the constitutive properties of rocks in both tension
and compression under moderate to low amplitude conditions.
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